We can quantify the economic impact of investing in roads for drivers - why not pedestrians?

John Lieswyn July 2023 Living Streets Walking Summit, Christchurch

Contribution to climate change

"We are on a highway to climate hell" - UN Secretary General, COP27, 8 November 2022

WALKING / JOGGING

Mode shift targets

Dunedin City target

To achieve a 50% reduction below 18/19 levels in land transport emissions by 2030/31 we need... (all trips mode share figures)

Central government goals, target

- Reducing carbon emissions, mode shift
- Growing and connecting safe urban networks

	WORK	SCHOOL	All trips (2018)	All trips (2030)	
×Å	9.6%	40.9%	5%	21%	
Gro	2.0%	2.4%	0.5%	18%	20% reduction
					In total kilometres travelled by light vehicles by 2035

Do Minimum network

What will that get us?

Dunedin is already a walking city in NZ terms

For walking, looking at (optimistically) a 5% mode shift for a low impact programme

Need a high impact programme + all other policy and intervention levers to really move the needle

Hybrid: Connected Communities + Education Focus

Six principles - overview

P1. An inclusive all ages and abilities environment

PEOPLE WHO USE OUR FOOTHPATH NETWORK

We CAN build the network... but we have to justify it first

We can quantify \$ benefits

2020 \$ = facility length x # new peds x 365 x \$4.40

2023 \$ = facility length x
 # new peds x days x \$9.90

But it's capped at \$3,100/yr

SP11 Walking and cycling facilities

Worksheet 5 - Benefits for walking and cycling facilities

Worksheet 5 is used to calculate the walking and cycling facility benefits for the various options. Only one category for walking and one category for cycling may be used in an evaluation of a proposal. If an activity contains more categories, they must be submitted as separate evaluations.

Activities that combine walking and cycling may claim benefits for both modes but safety issues arising from pedestrian/cycle conflicts must be addressed, and if there are additional crash costs these must be accounted for in worksheet 6. Make sure the estimates of the new number of pedestrians and/or cyclists generated by the facility are realistic.

Required information:

L Length of walking or cycling trip. Consider if this is a total trip length (i.e. return trip) for each of the number of new users, and note the average trip lengths defined in the MBCM.

- NPD Number of additional pedestrians per day
- NTD Number of additional cycle trips per day
- NSD Number of additional and existing cycle trips per day
- DF Discount factor. The discount factor may differ by mode depending on the growth rate

Health benefits for walking facility

Pedestrian growth rate (per annum)

1 Health and environment benefits for footpaths and other pedestrian facilities

Benefit = Capped annual benefit per pedestrian based on the maximum annual benefit of \$3,100 per user x NPD x frequency distribution of pedestrians x discount factor

L		NPD		DF	19.21		Total PV Capped benefit = \$	0	(
Days/wee	k	Annual benefit per new pedestrian		Capped annual benefit per pedestrian		Frequency distribution		PV of Capped benefit	
1	x L x 52 x \$9.90=	\$ -	= \$	0	x NDP x	19%	x DF = \$	0	
2	x L x 52 x \$9.90=	\$ -	= \$	0	x NDP x	19%	x DF = \$	0	
3	x L x 52 x \$9.90=	\$ -	= \$	0	x NDP x	17%	x DF = \$	0	
4	x L x 52 x \$9.90=	\$ -	= \$	0	x NDP x	11%	x DF = \$	0	
5	x L x 52 x \$9.90=	\$ -	= \$	0	x NDP x	13%	x DF = \$	0	
6	x L x 52 x \$9.90=	\$ -	= \$	0	x NDP x	4%	x DF = \$	0	
7	x L x 52 x \$9.90=	\$ -	= \$	0	x NDP x	17%	x DF = \$	0	

Health benefits from improvements at hazardous sites

(provision of overbridges, underpasses, bridge widening or intersection improvements for pedestrians)

Benefit = number of additional pedestrians/day x 365 x \$9.90 x discount factor

But how do we estimate new walkers?

Latent demand for walking and cycling

March 2021

J Beetham, WSP, Lower Hutt V Ivory, WSP, Lower Hutt J Thomas, WSP, Lower Hutt P Kortegast, WSP, Nelson D Cooper, WSP, Lower Hutt J Burton, WSP, Lower Hutt C Bowie, WSP, Lower Hutt (formerly) L Malde, WSP, Napier C Moore, WSP, Lower Hutt

NZ Transport Agency research report 676 Contracted research organisation – WSP New Zealand Ltd

New route based cycling demand model

• Based on the 22 sites considered in the modelling, a half-point improvement in QoS score results in an increase of approximately 130 riders per day.

• For the 22 sites, the average change in ridership after implementation was a +81% increase in daily cycling numbers.

Pedestrian counters in Dunedin

1. ABMs & scenario models

Recommendations for Improving Modeling

ACTIVITY BASED MODELS (ABMs)

to School

National

- Additional funding resources need to be dedicated by MPOs to expand the capabilities of ABMs and validate their outputs to track active transportation trips accurately.
- ABMs need local geographic data at a small scale for calibration to ensure accuracy. Agencies should invest in the collection of this data to ensure their ABMs are producing accurate results.
- ABMs need more demographic data from active transportation trips to be sensitive to different network users. Agencies should invest in the collection of this data to ensure their ABMs are producing accurate results. We don't have ABMs & don't collect enough of this demographic data in NZ

LAND USE AND SCENARIO PLANNING MODELS

- Strategies should be developed for modeling the "journey to school" and school-based travel trips to inform land use and transportation models.
- Scenario planning models should be used in early planning stages and scenarios should be developed with stakeholder input.
- Existing land use models need to be improved to project the impact land use has on active transportation rates and greenhouse gas reductions.
- Models should examine the benefits of improving the jobs housing fit, the impact of providing low income housing, the impacts of transit oriented development and mixed use development, the impacts on public health outcomes and the access to different land uses such as parks and schools.
 We are just starting this in NZ

Improving Modeling and Data Collection for Active Transportation May 2014

Vicky Li & Caleb Deverell, NZMUGS 2022

Renaissance Planning Group

Rich Kuzmyak

Chris Sinclair

Alex Bell

TRB National Transportation Planning Applications Conference May 6, 2013 Columbus, Ohio

The X Minute City

?

 $\mathbf{\nabla}$

Christchurch

Amenity/Service:	All	
Mode:	Walking	▼

On average, for walking to all amenities, Christchurch is a 20 minute city.

11% of residents live within a 10 minute walk of all amenities.

Christchurch's least accessible amenity by walking is a supermarket.

Population Distribution

Method: assess Pedestrian Network LoS

19 objective measures5 outcomesWeb-based tool

https://www.nzta.govt.nz/resources/research/reports/667/

How can we make walking safer and more enjoyable for pedestrians?

Assessed PLoS for representative sample of streets

- Crawford and Cumberland Streets (SH1) between Queens Gardens and the Oval
- Princes Street
- Safer Street project street segments MacLaggan Street, Hawthorn Ave, Musselburgh Rise, Māori Road
- Factory Road, Mosgiel
- South Dunedin
- Waterfront shared path and its connection to schools
- North Road (Northeast Valley)

Proposed level or quality of service for walking

Existing: 5.9 / 10

Street family	Safe from vehicles	Safe crossings	Secure	High quality paths	Pleasant & attractive	Overall score	
Activity Street	5.8	3.1	8.8	8.1	5	6.1	
vic Space & paths	9.2	6.9	6.3	10	9.6	8.7	
Local Street	6.3	3.8	8.8	6.3	5.4	5.8	
Main Street	5.8	3.8	7.5	7.5	5.8	6.1	
Jrban Connector	7.5	2.5	7.5	6.9	6.7	6.1	
Veighted average	6.5	3.5	8.6	6.6	5.6	5.9	

Level of service vs. walking mode share

	Ped LoS	Commute mode share	Schools mode share
Dunedin	(5.9)	10%	23%*
Whangarei	5.2	4%	13%
Timaru	5.4	5%	22%
Wellington	5.5	19%	34%

* excludes University and Polytech walkers (forced, generally able bodied adult walkers?)

Dunedin vs Wellington

Dunedin

- Parking: \$8 / day
- No bus lanes and a culture of driving
- 4 million trips by bus
- 10% commute walk mode share

Wellington

- Parking charges: \$20 \$40 / day
- Bus lanes everywhere
- 40 million trips by bus
- 19% commute walk mode share

https://www.transport.govt.nz/statistics-and-insights/public-transport/sheet/boardings-all-modes

Linear relationship - Ped LoS and mode share

for every 0.1 increase in Ped LOS we get .89% improvement in JTE mode share 0.69% improvement in JTW mode share

STRAD/

Hybrid: Connected Communities + Education Focus

Calculate mode shift and benefits

			0.69%		
Network walking	%change to		Increase in mode		New walking
demand (JTW)	network	increment in PLOS	share	New mode share	demand (JTW)
6,318	40 <mark>%</mark>	1.5	4.2%	14.1%	8,995
			0.89%		
Network walking	%change to		Increase in mode		New walking
demand (JTEd)	network	increment in PLOS	share	New mode share	demand (JTEd)
15,795	40%	1.5	5.4%	46.4%	17,882

NHTS active mode	Network walking	New network		Capped annual	Total annual	
factor (all trip purposes)	demand (all purposes)	(all purposes)	Net gain in pedestrians	benefit per new ped	benefits (undiscounted)	
5.36	118,526	144,061	25,535	\$3,100	\$79,158,448	

Assume that...

- Average walk trip 1 km
- Annual growth rate in pedestrians = 1%
- 40% of the network is improved
- Annual benefit \$79 million
- From point of completion a 40 year discounted benefit would be...

\$1,006,996,202

We share more knowledge on <u>www.viastrada.nz</u>

in f

VIASTRADA

TRANSPORT PLANNING AND DESIGN