

Benefits of New and Improved Pedestrian Facilities

Tracy Allatt
Shane Turner
Rohit Singh

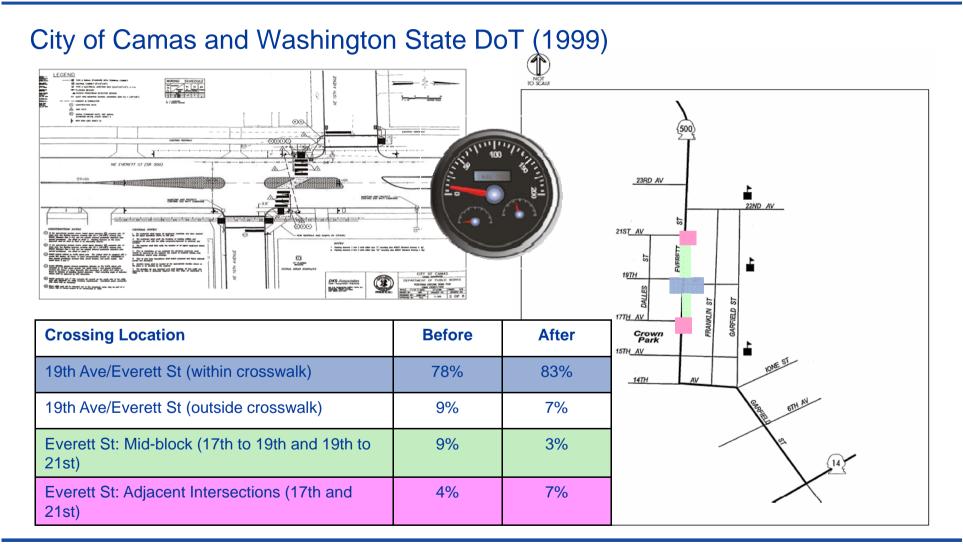
Overview

- Research Purpose and Objectives
- Key Literature Review Findings
- Study Methodology
- Case Study Sites
- Headline Results from the Study
- Overall Study Results & Conclusions

Research Purpose and Objectives

 Purpose – to gain an insight into how new and improved pedestrian crossing facilities lead to an increase in walking trips and how pedestrians value various crossing facilities

Objectives:


To record additional trips generated from new or upgraded pedestrian crossing facilities

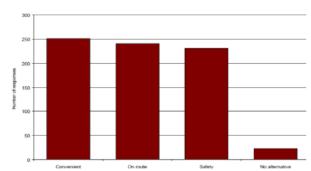
- To understand the importance that pedestrian facilities have on perception of safety, delay and directness
- To demonstrate the importance of collecting before and after data at pedestrian facilities

Key Literature Review Findings

Key Literature Review Findings cont...

What are the key considerations for pedestrians?

- Convenience
- Directness of route
- Safety

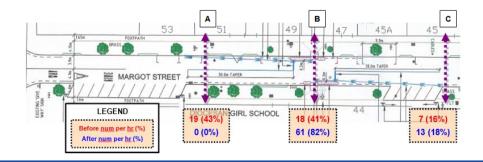

Main factors for using a formal crossing

- Road Safety (96%)
- Volume of Traffic (91%)

Main reasons for not using facilities

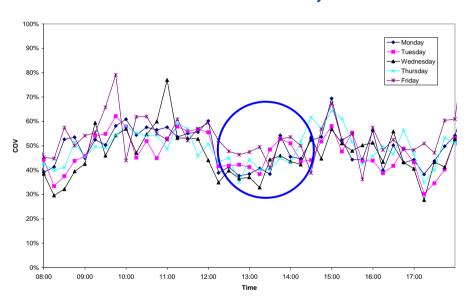
- Traffic was light
- It takes too long

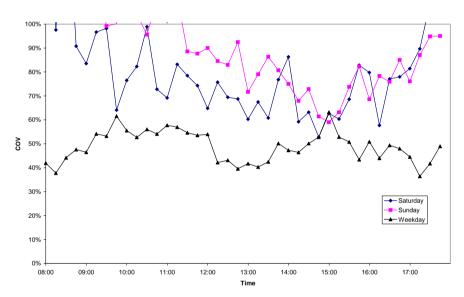
What do pedestrians prefer?



Study Methodology

- 1 Site Selection
 - Location of facility
 - Type of facility
- Pedestrian Attitude Survey Design
 - Rating of -3 to +3
- Surveyors conducted before and after surveys


- 3 Data Collection
- Site characteristics
- Cost of scheme implementation
- Crash Statistics
- **4** Pedestrian Counts
- Counts at the crossing
- Counts away from the crossing



Selection of Count Period(s)

Coefficient of variance between quarter hour counts on weekdays

Coefficient of variance between quarter hour counts on weekends

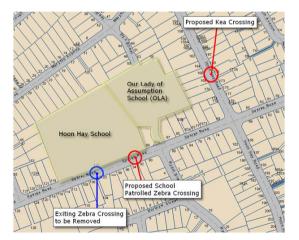
Scenario	Mean COV	n (Number of 15 minute survey intervals)
2-hr continuous count (as proposed);	50%	8
4-hr continuous count	56%	16
Two, 1.5 hour counts on adjacent weeks	47%	12

Pedestrian Surveys

- On Wednesdays for 1 & ½ hrs from 12
- In 15 min intervals
- For three consecutive weeks
- Before and after treatment
- Not to close to treatment

Case Studies Sites & Results

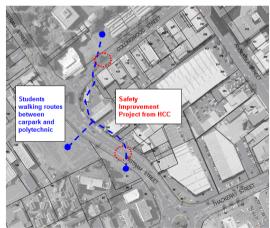
Location	Type of Improvement	"Before" Study (Ped/hr)	"After" Study (Ped/hr)	% increase	Significant increase?
Moorhouse Ave at Hoyts 8 / "Science Alive!", Christchurch	Signalised crossing	75	80	7%	No
Hereford Street, Christchurch	Raised zebra crossing with warning light system	628	607	-3%	No
Sparks Road, Christchurch	School patrolled zebra crossing	148	228	54%	Yes
Hoon Hay Road, Christchurch	Kea Crossing	43	64	49%	Yes
Ensors Road, Christchurch	Refuge Island and kerb extension	7	8	14%	No
Collingwood Street, Hamilton	Kerb extensions	30	57	90%	Yes
Tristram Street, Hamilton	Refuge Island	25	46	84%	Yes
Margot Street, Auckland	Kea Crossing	69	98	42%	Yes


Case Study Sites

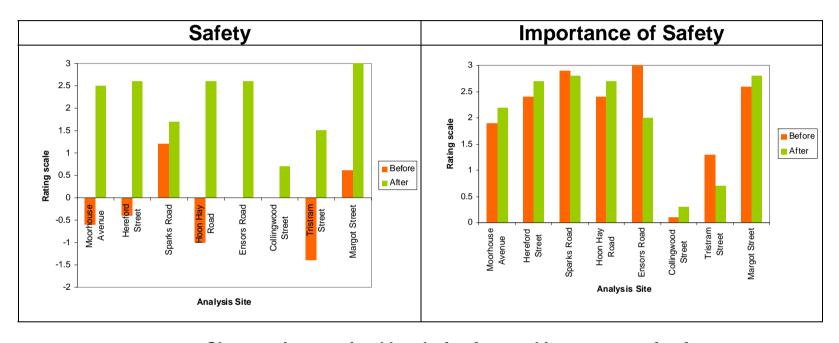
ENSORS ROAD

Moorhouse Avenue, Chch

Ensors Road, Chch

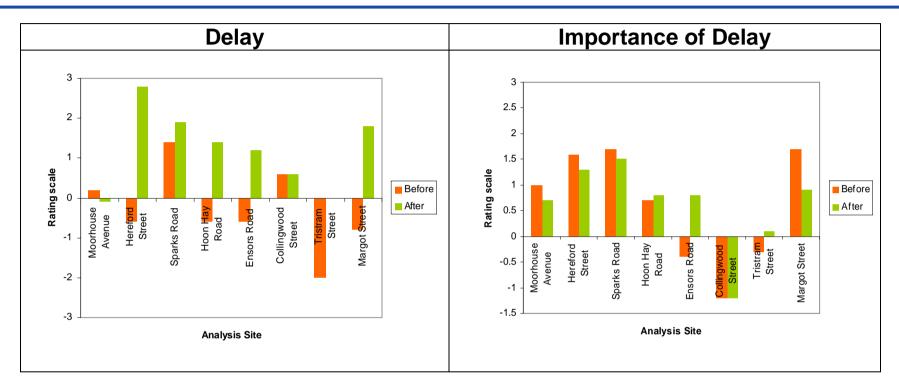


Sparks Road & Hoon Hay Road, Chch


Hereford Street, Chch

Collingwood & Tristram St, Hamilton

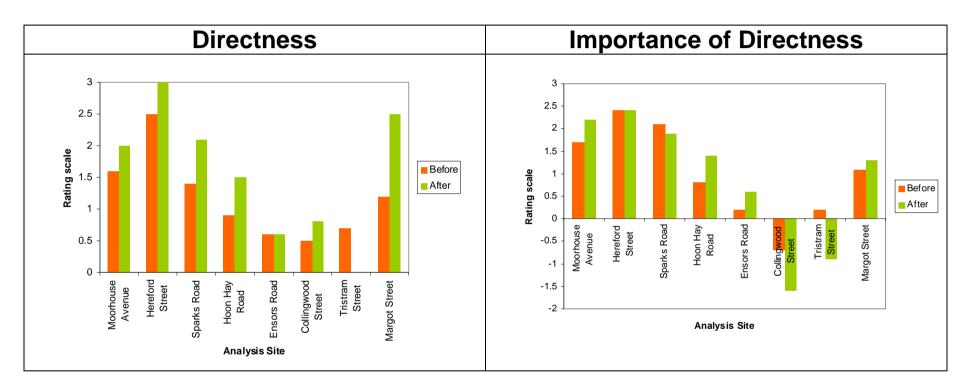
Perceived Safety Headline Results



Changes in perceived level of safety and importance of safety

The perceived safety increased at all eight sites with substantial increases at five sites

Perceived Delay Headline Results

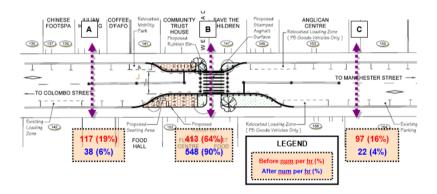


Changes in perceived level of delay and importance of delay

- The perceived delays were reduced at six of the eight sites.
- The importance of delay was found to be similar in the before and after surveys

Perceived Directness Headline Results

Changes in perceived level of directness and importance of directness


- At most of the sites directness was considered important
- most of the facilities were located on the key desire lines which resulted in an increase in the after situation

Overall Study Results

	Safety	Delay	Directness	
Highest perceived rating	Kea Crossings	Zebra crossings	Zebra crossings	
	Signalised crossing	Kea Crossings	Kea Crossings , Signalised crossing	
	Zebra crossings	Kerb extension / refuge Island		
Lowest perceived rating	Kerb extension / refuge Island	Signalised crossing	Kerb extension / refuge Island	

- Increased perceived safety does not guarantee an increase in pedestrian use
- Pedestrian perception does improve with the implementation of improved crossings.
- Pedestrian priority is paramount
- The right facility in the right location does however improve the crossing patterns
- The best options do not always cost the most – one size does not fit all!

A database has been developed to store continue collecting before and after data – the more data the better!

Questions

